Folate and Autism : Two studies

Clinical recognition and aspects of the cerebral folate deficiency syndromes.

http://www.ncbi.nlm.nih.gov/pubmed/23314536

We characterized cerebral folate deficiency (CFD) as any neuro-psychiatric condition associated with low spinal fluid (CSF) N5-methyltetrahydrofolate (MTHF) but normal folate status outside the central nervous system (CNS).

The commonest cause underlying CFD syndromes is the presence of serum autoantibodies of the blocking type directed against folate receptor-α (FRα) attached to the plasma-side of choroid plexus epithelial cells. Blocking FR antibodies inhibit MTHF transport across the choroid plexus. Serum titers of FR antibodies may fluctuate significantly over time. Less frequent causes of CFD are FOLR-1 mutations, mitochondrial disorders and inborn errors affecting folate metabolism.

Maternal FR antibodies have been associated with neural tube defects while the presence of FR antibodies in either one or both parents increases the risk of an offspring with infantile autism.

Recognizable CFD syndromes attributed to FR-antibodies in childhood are infantile-onset CFD presenting 4-6 months after birth, infantile autism with neurological deficits, and a spastic ataxic syndrome from the age of 1 year, while progressive dystonic or schizophrenic syndromes develop during adolescence. FR autoantibodies are frequently found in autism spectrum disorders, in an Aicardi-Goutières variant and in Rett syndrome.

The heterogeneous phenotype of CFD syndromes might be determined by different ages of onset and periods when FR autoantibodies are generated with consequent CNS folate deficiency. Folate deficiency during various critical stages of fetal and infantile development affects structural and functional refinement of the brain. Awareness of CFD syndromes should lead to early detection, diagnosis and improved prognosis of these potentially treatable group of autoimmune and genetically determined conditions.

—————

The diagnostic utility of folate receptor autoantibodies in blood.

http://www.ncbi.nlm.nih.gov/pubmed/23314538

Abstract Folate supplementation reduces the risk of neural tube defect (NTD) pregnancy, and folinic acid has been used to correct cerebral folate deficiency (CFD) in children with developmental disorders.

In the absence of systemic folate deficiency, the discovery of autoantibodies (AuAbs) to folate receptor α (FRα) that block the uptake of folate offers one mechanism to explain the response to folate in these disorders.

The association of FRα AuAbs with pregnancy-related complications, CFD syndrome, and autism spectrum disorders and response to folate therapy is highly suggestive of the involvement of these AuAbs in the disruption of brain development and function via folate pathways.

The two types of antibodies identified in the serum of patients are blocking antibody and binding antibody. The two antibodies can be measured by the specific assays described and exert their pathological effects either by functional blocking of folate transport as previously shown or hypothetically by disrupting the FR by an antigen-antibody-mediated inflammatory response.

We have identified both IgG and IgM AuAbs in these conditions. The predominant antibodies in women with NTD pregnancy belong to the IgG1 and IgG2 isotype and in CFD children, the IgG1 and IgG4 isotype.

This review describes the methods used to measure these AuAbs, their binding characteristics, affinity, cross-reactivity, and potential mechanisms by which folate therapy could work. Because these AuAbs are associated with various pathologies during fetal and neonatal development, early detection and intervention could prevent or reverse the consequences of exposure to these AuAbs.

Advertisements
This entry was posted in Autism, co-morbid, Environment. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s