Epigenetics and Twins – Autism

Twin differences – Emily Singer – SFARI

http://sfari.org/news-and-opinion/blog/twin-differences

“You might think that in the cramped quarters of the womb, twins would experience pretty much the same environment. But a new study, published 15 July in Genome Research, suggests otherwise.

Identical twins, who have the same DNA, are born with widespread differences in their epigenetic profiles —  chemical modifications to DNA that control when and where genes are expressed.

Epigenetics plays a vital role in normal development but has also been linked to many disorders, including autism. Analysis of postmortem brain tissue, for example, shows that epigenetic markers vary in people with autism compared with controls.

Studies suggest that when one identical twin has autism, the other will also have it about 40 to 90 percent of the time. A better understanding of how the prenatal environment influences epigenetics could help pinpoint early environmental risk factors for autism and help explain those cases in which only one twin has autism.

Researchers in Australia showed in 2011 that gene expression in twins varies widely at birth, as does their methylation — a type of epigenetic change — at certain sites in the genome.”

————————

Further Reading

Expression discordance of monozygotic twins at birth: effect of intrauterine environment and a possible mechanism for fetal programming.

http://www.ncbi.nlm.nih.gov/pubmed/21358273

Within-pair comparison of monozygotic (MZ) twins provides an ideal model for studying factors that regulate epigenetic profile, by controlling for genetic variation. Previous reports have demonstrated epigenetic variability within MZ pairs, but the contribution of early life exposures to this variation remains unclear. As epigenetic marks govern gene expression, we have used gene expression discordance as a proxy measure of epigenetic discordance in MZ twins at birth in two cell types. We found strong evidence of expression discordance at birth in both cell types and some evidence for higher discordance in twin pairs with separate placentas. Genes previously defined as being involved in response to the external environment showed the most variable expression within pairs, independent of cell type, supporting the idea that even slight differences in intrauterine environment can influence expression profile. Focusing on birthweight, previously identified as a predisposing factor for cardiovascular, metabolic and other complex diseases, and using a statistical model that estimated association based on within-pair variation of expression and birthweight, we found some association between birthweight and expression of genes involved in metabolism and cardiovascular function. This study is the first to examine expression discordance in newborn twins. It provides evidence of a link between birthweight and activity of specific cellular pathways and, as evidence points to gene expression profiles being maintained through cell division by epigenetic factors, provides a plausible biological mechanism for the previously described link between low birthweight and increased risk of later complex disease.

DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome.

http://www.ncbi.nlm.nih.gov/pubmed/20699328

Mounting evidence from both animal and human studies suggests that the epigenome is in constant drift over the life course in response to stochastic and environmental factors. In humans, this has been highlighted by a small number of studies that have demonstrated discordant DNA methylation patterns in adolescent or adult monozygotic (MZ) twin pairs. However, to date, it remains unclear when such differences emerge, and how prevalent they are across different tissues. To address this, we examined the methylation of four differentially methylated regions associated with the IGF2/H19 locus in multiple birth tissues derived from 91 twin pairs: 56 MZ and 35 dizygotic (DZ). Tissues included cord blood-derived mononuclear cells and granulocytes, human umbilical vein endothelial cells, buccal epithelial cells and placental tissue.

Considerable variation in DNA methylation was observed between tissues and between unrelated individuals. Most interestingly, methylation discordance was also present within twin pairs, with DZ pairs showing greater discordance than MZ pairs. These data highlight the variable contribution of both intrauterine environmental exposures and underlying genetic factors to the establishment of the neonatal epigenome of different tissues and confirm the intrauterine period as a sensitive time for the establishment of epigenetic variability in humans. This has implications for the effects of maternal environment on the development of the newborn epigenome and supports an epigenetic mechanism for the previously described phenomenon of ‘fetal programming’ of disease risk.

This entry was posted in Autism, Environment, Epigenetics, General, Genetics, Uncategorized and tagged , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s